Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2107395.v1

ABSTRACT

After keeping infections at bay for two years, Hong Kong experienced a surge of Omicron BA.2 infections in early 2022 that overwhelmed the health care system, isolation facilities, and contact tracing capacity, leading to one of the highest per-capita death rates of COVID-19 in early 2022. The outbreak occurred against a backdrop of a dense population with low immunity towards natural SARS-CoV-2 infection, high vaccine hesitancy in vulnerable populations, comprehensive disease surveillance and the capacity for stringent public health and social measures. Using genome sequences and epidemiological data from this time, we reconstruct the epidemic trajectory of the BA.2 wave, estimate transmission and incidence rates, and evaluate the effectiveness of policy changes. We identify an increase in the effective reproductive rate (Re) to 9.5 in mid-January 2022, which preceded real-time estimates of transmission (Rt), revealing that BA.2 community transmission was under-ascertained weeks before the epidemic appeared to surge in mid-February 2022. Due to this, public health measures were relaxed in early February (Spring Festival) while Re increased and remained > 1 throughout February. An independent estimation of point prevalence and incidence using phylodynamics also indicates extensive superspreading at this time, which likely contributed to the rapid expansion of the epidemic. This study demonstrates that relying on Rt estimation methods dependent on case reporting can misinform epidemic response planning, sometimes with substantial consequences. There is a need for future research and implementation of improved estimates of epidemic growth in near real-time that combine multiple disparate data sources to better inform outbreak response policy.


Subject(s)
COVID-19
2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-850533.v1

ABSTRACT

Annual epidemics of seasonal influenza cause hundreds of thousands of deaths, high levels of morbidity, and substantial economic loss. Yet, global influenza circulation has been heavily suppressed by public health measures and travel restrictions since the onset of the COVID-19 pandemic. Notably, the influenza B/Yamagata lineage has not been conclusively detected since April 2020, and A(H3N2), A(H1N1), and B/Victoria viruses circulate with considerably less genetic diversity. Travel restrictions have largely confined regional outbreaks of A(H3N2) to South and Southeast Asia, B/Victoria epidemics in China, and A(H1N1) in West Africa. Seasonal influenza transmission lineages continue to perish globally, except in select hotspots, which will likely seed future epidemics. Waning population immunity and sporadic case detection will further challenge influenza vaccine strain selection and epidemic control. We offer perspective on the potential short- and long-term evolutionary dynamics of seasonal influenza and discuss potential consequences and mitigation strategies as global travel gradually returns to pre-pandemic levels.


Subject(s)
COVID-19 , Influenza, Human , Encephalitis, Arbovirus
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.21.21260810

ABSTRACT

Human respiratory syncytial virus (RSV) is an important cause of acute respiratory infection (ARI) with the most severe disease in the young and elderly. Non-pharmaceutical interventions (NPIs) and travel restrictions for controlling COVID-19 have impacted the circulation of most respiratory viruses including RSV globally, particularly in Australia, where during 2020 the normal winter epidemics were notably absent. However, in late 2020, unprecedented widespread RSV outbreaks occurred, beginning in spring, and extending into summer across two widely separated states of Australia, Western Australia (WA) and New South Wales (NSW) including the Australian Capital Territory (ACT). Genome sequencing revealed a significant reduction in RSV genetic diversity following COVID-19 emergence except for two genetically distinct RSV-A clades. These clades circulated cryptically, likely localized for several months prior to an epidemic surge in cases upon relaxation of COVID-19 control measures. The NSW/ACT clade subsequently spread to the neighbouring state of Victoria (VIC) and caused extensive outbreaks and hospitalisations in early 2021. These findings highlight the need for continued surveillance and sequencing of RSV and other respiratory viruses during and after the COVID-19 pandemic as mitigation measures introduced may result in unusual seasonality, along with larger or more severe outbreaks in the future.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Tract Infections
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.22.21260854

ABSTRACT

Background. A large cluster of 59 cases were linked to a single flight with 146 passengers from New Delhi to Hong Kong in April 2021. This outbreak coincided with early reports of exponential pandemic growth in New Delhi, which reached a peak of >400,000 newly confirmed cases on 7 May 2021. Methods. Epidemiological information including date of symptom onset, date of positive-sample detection, and travel and contact history for individual cases from this flight were collected. Whole genome sequencing was performed, and sequences were classified based on the dynamic Pango nomenclature system. Maximum-likelihood phylogenetic analysis compared sequences from this flight alongside other cases imported from India to Hong Kong on 26 flights between June 2020 and April 2021, as well as sequences from India or associated with India-related travel from February to April 2021, and 1,217 reference sequences. Results. Sequence analysis identified six lineages of SARS-CoV-2 belonging to two variants of concern (Alpha and Delta) and one variant of public health interest (Kappa) involved in this outbreak. Phylogenetic analysis confirmed at least three independent sub-lineages of Alpha with limited onward transmission, a superspreading event comprising 37 cases of Kappa, and transmission of Delta to only one passenger. Additional analysis of another 26 flights from India to Hong Kong confirmed widespread circulation of all three variants in India since early March 2021. Conclusions. The broad spectrum of disease severity and long incubation period of SARS-CoV-2 pose a challenge for surveillance and control. As illustrated by this particular outbreak, opportunistic infections of SARS-CoV-2 can occur irrespective of variant lineage, and requiring a nucleic acid test within 72 hours of departure may be insufficient to prevent importation or in-flight transmission.


Subject(s)
Opportunistic Infections , Severe Acute Respiratory Syndrome , Addison Disease
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.19.21259169

ABSTRACT

Hong Kong utilized an elimination strategy with intermittent use of public health and social measures and increasingly stringent travel regulations to control SARS-CoV-2 transmission. By analyzing >1700 genome sequences representing 17% of confirmed cases from 23-January-2020 to 26-January-2021, we reveal the effects of fluctuating control measures on the evolution and epidemiology of SARS-CoV-2 lineages in Hong Kong. Despite numerous importations, only three introductions were responsible for 90% of locally-acquired cases, two of which circulated cryptically for weeks while less stringent measures were in place. We found that SARS-CoV-2 within-host diversity was most similar among transmission pairs and epidemiological clusters due to a strong transmission bottleneck through which similar genetic background generates similar within-host diversity.

SELECTION OF CITATIONS
SEARCH DETAIL